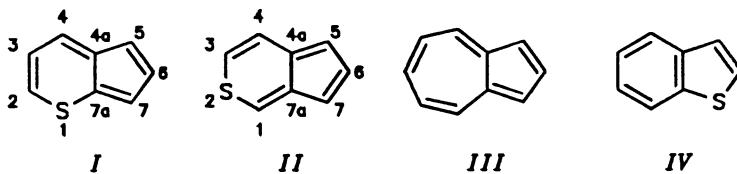


NMR SPECTROSCOPIC STUDIES OF THIALENE (CYCLOPENTA[*b*]-THIAPYRAN) AND ISOTHIALENE (CYCLOPENTA[*c*]THIAPYRAN)

Robert F. X. KLEIN^{a,*}, Václav HORÁK^a and Arthur G. ANDERSON, jr.^b

^aDepartment of Chemistry,
Georgetown University Washington, DC 20057-0001, U.S.A.


^bDepartment of Chemistry,
University of Washington, Seattle, Washington 98195-0001, U.S.A.

Received June 16, 1992

Accepted July 20, 1992

¹H and ¹³C NMR spectral parameters are reported for the S-pseudoazulenes thialene (cyclopenta[*b*]thiapyran) (*I*) and isothialene (cyclopenta[*c*]thiapyran) (*II*). Both compounds display complex first order spectra, with thialene having 10 and isothialene 14 of 15 possible coupling constants. Complete unambiguous assignments of all protons and non-quaternary carbons were made via 2-dimensional NMR techniques and PPP-SCF π -electron density/chemical shift and π -bond order/vicinal coupling constant correlations.

Thialene^{1,**} (cyclopenta[*b*]thiapyran) (*I*) and isothialene² (cyclopenta[*c*]thiapyran) (*II*) are iso- π -electronic S-heteroanalogues of azulene (*III*) (hence the general classification³ "pseudoazulenes") and may be viewed as the non-benzenoid isomers of benzo[*b*]thiophene (*IV*). As such, both compounds have attracted considerable interest in heteroaromaticity and molecular orbital studies^{1,3}.

* Current address: Special Testing and Research Laboratory, 7704 Old Springhouse Road, McLean, VA 22102-3494, U.S.A.

**This article includes a comprehensive review of the parent N, O, and S-pseudoazulenes and contains extensive pertinent references.

NMR has been extensively utilized in determination of aromaticity^{4,5}. Previous NMR studies of *I* (ref.¹) and *II* (refs ^{2,6,7}) verified sustained ring currents (based on chemical shifts) and firmly established both compounds as aromatic based on a diatropic definition^{5,8-10}. However, these studies were either accomplished at low field and/or were only tentatively assigned. In particular, the elucidation of coupling constants was hampered by the nearly coincident chemical shifts of several coupled protons, resulting in pronounced second order effects and virtually uninterpretable fine structure.

The recent advent of high field NMR spectrometers and concurrent development of two-dimensional NMR experiments^{11,12} has allowed for nearly routine solutions of highly complex compounds. Herein, we report a comprehensive NMR study of *I* and *II*.

EXPERIMENTAL

Thialene (*I*) and isothialene (*II*) were prepared as previously described^{1,2}. All NMR solvents were products of MSD Isotopes and were purified via column chromatography over aluminum oxide and saturated with nitrogen prior to use. NMR samples were prepared under nitrogen and kept at dry ice or liquid nitrogen temperatures prior to use. Proton and carbon spectra were obtained with 1 and 5% solutions, respectively (see Tables I - IV).

Most 1-D and all 2-D NMR spectra were run on a Bruker AM-300 WB NMR spectrometer operating at 300.1 MHz for ¹H and 75.5 MHz for ¹³C. All 2-D experiments (COSY-45, COSY-LR, JRES and HETE-ROCOSY) were run and processed using standard Bruker software. For thialene, the ¹H NMR spectra was obtained at 600.6 MHz using the experimental spectrometer at The NMR Facility for Biomedical Studies, Carnegie-Mellon University, Pittsburgh, PA (U.S.A.). The 75.47 MHz ¹H decoupled ¹³C NMR spectra of thialene was obtained on a General Electric GN-300 WB NMR spectrometer. All spectra were obtained at -20 °C (except the 600.6 MHz ¹H NMR of thialene, obtained at 20 °C) and were calibrated using internal tetramethylsilane. Standard acquisition parameters were utilized for all 1- and 2-D experiments.

RESULTS AND DISCUSSION

¹H NMR spectra were run in both tetrachloromethane (a non-polar solvent allowing π -electron density/chemical shift correlations) and hexadeuteriobenzene (an interactive solvent giving dramatic chemical shift differences (vs CCl₄) and thereby aiding generation of first order spectra) (Tables I and III). In the case of *I*, extensive overlap occurred in both solvents at 300.1 MHz, and analysis at 600.6 MHz was utilized in order to (successfully) resolve individual multiplets and minimize second order effects. Coupling constants for *I* (10 non-zero *J*'s) were determined from expansions of individual multiplets and were confirmed via simulation (NMRCAL) (ref.¹³) and COSY-45 and COSY-LR experiments; coupling constants for *II* (14 non-zero *J*'s) were determined from expansions of individual multiplets derived from JRES experiments and were confirmed via COSY-45 and COSY-LR experiments.

Proton assignments in bicyclic wholly aromatic molecules with extensive inter-ring couplings (such as *I* and *II*) offer a significant challenge even to advanced NMR techniques. In *I* there are two separate three proton groupings (H-2 – H-4 and H-5 – H-7)

which can be rationally ordered and assigned with reasonable certainty to the six and five membered rings, respectively, based on vicinal coupling constants and chemical shifts. However, differentiation and definitive assignment of H-2 vs H-4 or H-5 vs H-7, respectively, is virtually impossible via inspection or (in this case) even with advanced two-dimensional NMR experiments*. To a lesser extent, similar difficulties are evident in *II*.

TABLE I
¹H NMR parameters of thialene (*I*), chemical shifts in ppm (δ -scale), coupling constants (*J*) in Hz

Parameter	Chemical shifts		
	CCl ₄ ^a	CDCl ₃ ^b	C ₆ D ₆ ^c
ν_2	7.61 ddd	7.82	7.03
ν_3	7.11 dd	7.26	6.66
ν_4	7.84 dddd	8.04	7.61
ν_5	6.79 ddd	6.96	7.12
ν_6	7.30 dddd	7.46	7.59
ν_7	6.82 ddd	6.97	7.06

Parameter	Coupling constants	Parameter	Coupling constants
<i>J</i> (2,3)	8.86	<i>J</i> (3,7)	0.00
<i>J</i> (2,4)	0.73	<i>J</i> (4,5)	0.41
<i>J</i> (2,5)	0.00	<i>J</i> (4,6)	0.43
<i>J</i> (2,6)	0.73	<i>J</i> (4,7)	1.20
<i>J</i> (2,7)	0.00	<i>J</i> (5,6)	4.61
<i>J</i> (3,4)	7.57	<i>J</i> (5,7)	1.29
<i>J</i> (3,5)	0.00	<i>J</i> (6,7)	3.29
<i>J</i> (3,6)	0.00		

^a Obtained at 600.6 MHz in CCl₄ solution; iterated values from 1180 ITRCAL (Nicolet Instrument Corporation, Madison, Wisconsin 1977). ^b Obtained at 300.1 MHz in CDCl₃ solution; δ (CHCl₃) 7.27 ppm. ^c Obtained at 300.1 MHz in C₆D₆ solution; δ (C₆H₆) 7.32 ppm.

* The low concentrations mandated by thialene's extreme sensitivity preclude carbon-carbon connectivity experiments (e.g., 2D-INADEQUATE); similarly, the extensive variations in carbon-proton couplings (typical of heteroaromatics; see Tables II and IV) preclude tuned relay experiments. If either type experiment could be accomplished, then correlation of the results with a HETEROCOSY experiment would, of course, give definitive assignments.

TABLE II
 ^{13}C NMR (in CDCl_3 at 75.47 MHz) parameters of thialene (*I*)

Parameter	δ , ppm ^a	Multiplicity ^b	$J(\text{C}-\text{H})$, Hz
ν_2	129.03	ddd	177, 7, 5
ν_3	116.59	d	165
ν_4	130.90	dd	159.5, 9
ν_{4a}	122.72	m	—
ν_5	110.01	ddd	169.5, 8, 8 ^c
ν_6	131.97	ddd	164.5, 5, 5
ν_7	110.13	ddd	170, 5, 5 ^c
ν_{7a}	132.09	m	—

^a Values from ^1H -decoupled ^{13}C NMR spectrum; assignments of non-quaternary carbons derived from 2-D HETEROCOSY experiments; quaternary assignments are tentative; $\delta(\text{CDCl}_3)$ 77.05 ppm. ^b Derived from Gated Decoupling experiments; ^c C-5 and C-7 are nearly coincident; listed multiplicities and values are approximate.

TABLE III
 ^1H NMR parameters (300.1 MHz) of isothialene (*II*), chemical shifts in ppm (δ -scale), coupling constants (J) in Hz

Parameter	Chemical shifts		Multiplicity
	CCl_4	C_6D_6 ^a	
ν_1	8.12	7.59	dddddd
ν_3	6.68	6.22	dddddd
ν_4	7.75	7.55	dddddd
ν_5	6.66	6.87	dddddd
ν_6	7.22	7.45	dddddd
ν_7	6.62	6.76	dddddd

Parameter	Coupling constants		Parameter	Coupling constants	
	CCl_4	C_6D_6		CCl_4	C_6D_6
$J(1,3)$	3.03	3.08	$J(3,7)$	0.35	0.37
$J(1,4)$	0.95	0.95	$J(4,5)$	0.35	0.36
$J(1,5)$	1.15	1.08	$J(4,6)$	0.12	0.13
$J(1,6)$	0.45	0.45	$J(4,7)$	0.67	0.72
$J(1,7)$	0.32	0.34	$J(5,6)$	3.00	2.87
$J(3,4)$	9.35	9.35	$J(5,7)$	1.33	1.26
$J(3,5)$	0.55	0.52	$J(6,7)$	4.61	4.61
$J(3,6)$	0.00	0.00			

^a $\delta(\text{C}_6\text{H}_6)$ 7.15 ppm.

TABLE IV
 ^{13}C NMR (at 75.47 MHz) parameters of isothialene (*II*), chemical shifts in ppm (δ -scale)

Parameter	Chemical shifts		$J(\text{C}-\text{H})^c$, Hz
	CCl_4^a	C_6D_6^b	
ν_1	129.28 dd	131.00	174, 6
ν_3	110.68 ddd	111.95	178, 5, 5
ν_4	124.13 dd	124.91	160, 3
ν_{4a}	136.34 m	137.17	—
ν_5	114.65 dddd	115.41	167, 9, 5.5, 3.5
ν_6	133.37 ddd	134.14	162, 5, 5
ν_7	110.98 dddd	111.98	171, 7, 7, 4.5
ν_{7a}	126.60 m	127.95	—

^a Co-axial tube containing CD_3SOCD_3 used for deuterium lock. Values from ^1H -decoupled ^{13}C NMR spectrum; assignments of non quaternary carbons derived from 2-D HETEROCOSY experiments; quaternary assignments are tentative; $\delta(\text{CCl}_4)$ 96.00 ppm. Multiplicities derived from Gated Decoupling experiments. ^b $\delta(\text{C}_6\text{D}_6)$ 128.40 ppm. ^c Taken from spectrum measured in CCl_4 .

TABLE V
 PPP-SCF molecular orbital parameters¹⁴ of thialene (*I*) and isothialene (*II*)

π -Electron densities		π -Bond orders		π -Electron densities		π -Bond orders	
position	q	position	q	position	q	position	q
Thialene (<i>I</i>)				Isothialene (<i>II</i>)			
1	1.647	1 - 7a	0.396	1	0.912	1 - 2	0.510
2	0.947	4a - 7a	0.365	2	1.658	1 - 7a	0.704
3	1.069	4 - 4a	0.669	3	1.061	4a - 7a	0.352
4	0.903	3 - 4	0.601	4	0.996	4 - 4a	0.497
4a	1.033	2 - 3	0.728	4a	1.046	3 - 4	0.798
5	1.148	1 - 2	0.515	5	1.120	2 - 3	0.410
6	1.022	4a - 5	0.524	6	1.029	4a - 5	0.679
7	1.179	5 - 6	0.734	7	1.134	5 - 6	0.593
7a	1.052	6 - 7	0.576	7a	1.044	6 - 7	0.729
		7 - 7a	0.701			7 - 7a	0.516

Definitive proton assignments were therefore made via PPP-SCF molecular orbital calculations (Table V). For both compounds, plots of π -electron densities vs chemical shifts show excellent linear correlations¹⁵⁻¹⁸ (*I* (Fig. 1): $r = 0.9905$; *II* (Fig. 2): $r = 0.9487$); the correlation for *I* is, we believe, the highest ever observed for an aromatic heterocycle. Assignments of H-2 vs H-4 and H-5 vs H-7 in *I* and H-5 vs H-7 in *II* were further confirmed via vicinal coupling constant/ π -bond order correlations (*I*: $J(3,4)/J(2,3) = 0.854$, $p_d/p_e = 0.826$; $J(6,7)/J(5,6) = 0.714$, $p_{6,7}/p_{5,6} = 0.785$; *II*: $J(5,6)/J(6,7) = 0.651$, $p_{5,6}/p_{6,7} = 0.813$)^{4,18-22}. The results confirm partial π -bond localization*, as is similarly observed in benzenoid [4.3.0] heteroaromatics²⁵. All results were completely internally self-consistent.

Definitive assignments of all non-quaternary carbons were routinely made via proton/carbon HETEROCOSY experiments (Tables II and IV); the results correct numerous previously reported misassignments for both molecules^{1,2,6,7}. Quaternary carbons remain tentatively assigned; in *I*, assignments were based on correlation of the *ortho* ($\nu_2 = 129.03$ ppm; assigned $\nu_{7a} = 132.09$ ppm) and *meta* carbons ($\nu_3 = 116.59$ ppm; assigned $\nu_{4a} = 122.72$ ppm). In *II*, assignments were similarly based on correlation of the *meta* carbons ($\nu_4 = 124.13$ ppm; assigned $\nu_{7a} = 126.60$ ppm) and comparison of the *meta* vs *para* carbons in *I* (suggesting that the *para* carbon in *II* should be approximately 10 ppm downfield of the *meta* carbons; assigned $\nu_{4a} = 136.34$ ppm).

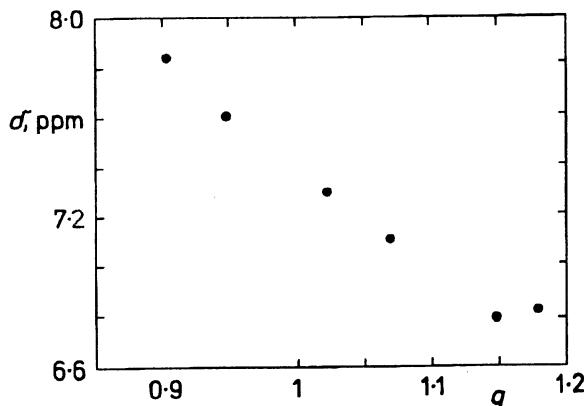


FIG. 1
PPP-SCF-MO calculated π -electron densities (q) vs iterated 600.6 MHz ^1H NMR of thialene (*I*) in CCl_4

* Compared with completely delocalized (0.500) or completely fixed (1.000). Constancy of $J_{(\text{ORTHO})}$ is utilized as an aromaticity criterion, see refs^{23,24}.

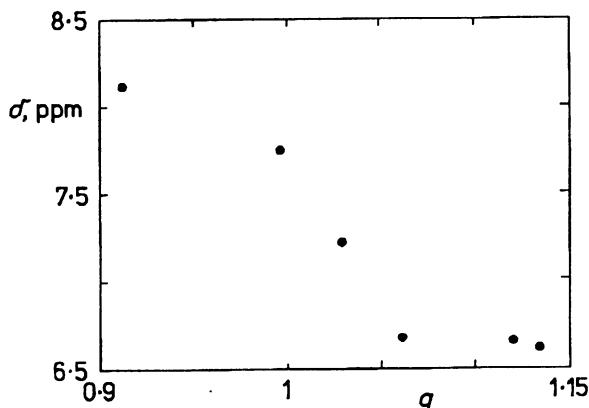


FIG. 2
PPP-SCF-MO calculated π -electron densities (q) vs 300.1 MHz ^1H NMR of isothialene (II) in CCl_4

The primary author gratefully acknowledges the assistance of Professor Charles F. Hammer, Georgetown University, who taught him the intricacies of high field NMR analysis.

REFERENCES

1. Klein R. F. X., Horak V.: *J. Org. Chem.* **51**, 4644 (1986).
2. Anderson A. G. jr., Harrison W. F., Anderson R. G.: *J. Am. Chem. Soc.* **85**, 3448 (1963).
3. Timpe H. J., El'isov A. V.: *Adv. Heterocycl. Chem.* **33**, 185 (1983).
4. Cook M. J., Katritzky A. R., Linda P.: *Adv. Heterocycl. Chem.* **17**, 255 (1974).
5. Jones A. J.: *Rev. Pure Appl. Chem.* **18**, 253 (1968).
6. Anderson A. G. jr., Tober T. Y.: *J. Chem. Eng. Data* **27**, 99 (1982).
7. Anderson A. G. jr., Harrison W. F.: *J. Am. Chem. Soc.* **86**, 708 (1964).
8. March J.: *Advanced Organic Chemistry*, 3rd ed., p. 38. Wiley, New York 1985.
9. Mallion R. B.: *Pure Appl. Chem.* **52**, 1541 (1980).
10. Haigh C. W., Mallion R. B.: *Prog. Nucl. Magn. Reson. Spectrosc.* **13**, 303 (1980).
11. Atta-ur-Rahman: *One and Two Dimensional NMR Spectroscopy*. Elsevier, New York 1989.
12. Martin G. E., Zektzer A. S.: *Two Dimensional NMR Methods for Establishing Molecular Connectivity; A Chemist's Guide to Experiment Selection, Performance and Interpretation*. Chemie, New York 1988.
13. *1080 NMRCAL*. Nicolet Instrument Corporation, Madison, Wisconsin 1971.
14. Zahradník R., Fabian J., Mehlhorn A., Kvasnička V. in: *Organosulfur Chemistry* (M. J. Janssen, Ed.), p. 203. Interscience, New York 1967.
15. Becker E. D.: *High Resolution NMR*, 2nd ed. Academic Press, New York 1980.
16. Tokuhiro T., Wilson N. K., Fraenkel G.: *J. Am. Chem. Soc.* **90**, 3622 (1968).
17. Black P. J., Brown R. D., Heffernan M. L.: *Aust. J. Chem.* **20**, 1305 (1967).
18. Memory J. D., Wilson N. K.: *NMR of Aromatic Compounds*. Wiley, New York 1982.
19. Guenther H., Schmickler H., Guenther M. E., Cremer D.: *Org. Magn. Reson.* **9**, 420 (1977).
20. Copper M. A., Manatt S. L.: *J. Am. Chem. Soc.* **91**, 6325 (1969).
21. Smith W. B., Watson W. H., Chiranjeevi S.: *J. Am. Chem. Soc.* **89**, 1438 (1967).

22. Jonathan N., Gordon S., Dailey B. P.: *J. Chem. Phys.* **36**, 2443 (1962).
23. Ferguson L. N.: *Organic Molecular Structure*, p. 219. Willard Grant, Boston 1975.
24. Bertelli D. J., Andrews T. J. jr., Crews P. O.: *J. Am. Chem. Soc.* **91**, 5286 (1969).
25. Gilchrist T. L.: *Heterocyclic Chemistry*, Chap. 2. Pittman, Marshfield 1985.